
Crosser Online Training

ADVANCED SESSION
C1 – Databases
Use databases as sources and
destinations for your data

Session C1
Agenda

• Databases

• SQL (relational databases)

• NoSQL databases

• Time series databases

• Modules

• Ms SQL Insert/Select

• Redis Set/Get

• Exercises

3

• Wide support for common SQL databases, both
self-hosted and cloud-based

• Work with data without SQL knowledge

• Or, use any custom SQL statements

• Common interface both for configuration and data
→ Easily switch between different databases

SQL Modules

4

• Use Select modules to get data from a
table
• Choose a table

• Select columns of interest, or get all

• Add filters to get the right data

• Use message data to make dynamic
queries

• The output is always an array of row(s)

• Use Insert modules to write rows to the
database
• Choose a table

• Insert one row at a time

• Or batch load multiple rows

Using SQL Databases without SQL

{
“col1”: value1,
“col2”: value2,
“col3”: value3,
…

}

Common message format

Property names match column

names

5

• Use Executer modules to run any
queries against your database

• Combine data from multiple tables

• Take actions: e.g. add columns and tables,

or delete records

• Use stored procedures

• Use message data as parameters in the

SQL statements, for dynamic queries

Using Custom SQL

Database Credentials

• Most of the database modules use connection strings to connect to the databases. Connection
strings typically contain at least:

• Server address (host name or IP address)

• Database name

• Username and password

• Other, optional, settings may be available depending on the database used

• Page for connection string examples: connectionstrings.com

• Example Ms SQL connection string:

• Server=myServerAddress;Database=myDataBase;User Id=myUsername;Password=myPassword;

• Note that the database is specified in the connection string, ie using another database will require a new

credential

• Database connection strings are added on the Credentials page or from the module settings

https://www.connectionstrings.com/

Module
Ms SQL Select

• The Ms SQL Select module retrieves rows from a
Microsoft SQL Server database table

• Runs a query and returns data each time a message is
received

• Will get data from one configured Table

• Get all, or a specified subset of, Columns

• Possible to set how many rows to skip or read

• Order By and Sort Order can be specified

• Filters - A list of conditions that are translated into a
SQL WHERE statement
• Behavior - possible to filter using static data or use data

from a Property on the incoming messages

• If many filters are used each row must match every one of
them (AND)

• Results are delivered as arrays [1:n] of objects, with
one row per object

Module
Ms SQL Insert

• The Ms SQL Insert module inserts flow messages
into rows of a table in a Microsoft SQL Server
database

• Credential – Connection string to the DB added in
Credential page

• Table name – Name of the table on the Ms SQL
server

• Property names and datatypes must be same as
in the database table

NoSQL Databases

• Redis (key/value and pub/sub database)
• Data is written to a specified Key or Topic

• MongoDB (document database)
• Data is written to a Collection

• Internal (key/value)
• Data is written to a key

• Data can be stored on disk or in memory

• Always available

• These databases have no specific requirements on
the data inserted, any message (object) can be
used

Key/Value Stores - Redis

• Decouple storage and usage of data

• For example, use data in a Flow that has been stored in the
Redis server by an external system, or another Flow

• Read the data when needed

• Note: A Redis server must be available and accessible from
the Crosser Node

{
“key”: ”myData”,
“value”: {
“name”: “John Doe”,
“address”: {
“street”: “Crossroad”,
“zip”: “12345”
“city”: “Stockholm”

}
}

}

{
“key”: ”myData”

}

{
“value”: {
“name”: “John Doe”,
“address”: {
“street”: “Crossroad”,
“zip”: “12345”
“city”: “Stockholm”

}
}

}

Key/Value Stores - Crosser
• Store data in one part of a Flow and use it in another part,

or in another Flow (share data between Flows)

• For example, store ‘static’ data that has been pulled in from
an external system and add it to streaming data messages
without having to make multiple external requests

{
“key”: ”myData”,
“value”: {
“name”: “John Doe”,
“address”: {
“street”: “Crossroad”,
“zip”: “12345”
“city”: “Stockholm”

}
}

}

{
“key”: ”myData”

}

{
“value”: {
“name”: “John Doe”,
“address”: {
“street”: “Crossroad”,
“zip”: “12345”
“city”: “Stockholm”

}
}

}

Each Crosser Node has a built-in key/value store!

Store data in memory or on disk

Pub/Sub Stores - Redis

• Decouple storage and usage of data

• For example, use data in a Flow that has been stored in the
Redis server by an external system, or another Flow

• Get new data when it’s updated

• Note: A Redis server must be available and accessible from
the Crosser Node

{
“topic”: ”myData”,
“value”: {
“name”: “John Doe”,
“address”: {
“street”: “Crossroad”,
“zip”: “12345”
“city”: “Stockholm”

}
}

}

{
“value”: {
“name”: “John Doe”,
“address”: {
“street”: “Crossroad”,
“zip”: “12345”
“city”: “Stockholm”

}
}

}

Time Series Databases

• A time series database is a database optimized for time series data.
Time series data are simply measurements or events that are tracked,
monitored and aggregated over time.

• All data is associated with a timestamp, either provided explicitly, or
added by the database when ingesting data

• Example of use cases where a time series database make sense:
• Monitoring physical systems (sensor data): Equipment, machinery, connected

devices, the environment

• Monitoring software systems (performance metrics): Virtual machines,
containers, services, applications

• Asset tracking (positional data): Vehicles, trucks, physical containers, pallets

• Crosser supports the following time series databases:
• Influx DB

• TimescaleDB

EXERCISES

16

Setting up the training environment

• The exercises require a local set up with a Crosser Node and
databases running in Docker

• Use the docker-compose.yml file that can be downloaded from the
Help Center on the page for this session

• Register a Node in Control Center and add the credentials to the
docker-compose.yml file

• Install the software by running the following command in the same
directory as your docker-compose.yml file:

docker-compose up –d

• All exercises must run on the Node you registered above

You need docker and

docker-compose on your

local machine!

Exercise C1.1
Overview

• In this exercise you will use a PostgreSQL database to store calibration
values for sensor data.

• We will start by writing the calibration data and then use this data to
adjust our sensor data.

• Finally, we will write the calibrated data to the database

• To access the PostgreSQL database you need the following connection
string: Server=postgres;Database=crosser-dev;User ID=crosser;Password=CrosserDev2023;

You can add this from within one of the PostgreSQL modules, or on the
Credentials page

• The database has two empty tables: calibration (name, value) and data
(timestamp, name, value)

Exercise C1.1
Add calibration data

1. Use a PostgreSQL Insert module to insert data as shown above, into the calibration table
(the Message Template module can come in handy here)

2. Run your Flow once to insert the data and then disable the insert module. Use a
PostgreSQL Select module to verify that the data has been written to the database.

name value

machine-1 1.5

machine-2 2

machine-3 2.5

Exercise C1.1
Generate sensor data

1. Use a Data Generator module to produce some ’sensor’ data. Use the default example
(’ADD EXAMPLE’) and then make the following changes:
- Number of Samples: 3
- Data Rules→name→Behavior: Identifier

2. Run the Flow and verify that you get messages with random temp/pressure data and
where ’name’ is one of: machine-1, machine-2 or machine-3

Exercise C1.1
Fetch calibration data

1. Add a PostgreSQL Select module to fetch the calibration data corresponding to each
sensor value:
- Add a filter on the name column and check if it equals the name from the incoming message. Set
’Behavior’ to Property to indicate that the data should be taken from the message property.
- Set the ’Target Property’ to calibrationData.

2. Run the Flow and verify that your messages now also contain calibration data
corresponding to the name of the sensor (compare with the calibration table)

Exercise C1.1
Write adjusted data to the database

1. Use a Math module to adjust the temp values by multiplying with the corresponding
calibration data

2. Use a Property Mapper to create a message with properties matching the columns in the
’data’ table, with data from the sensor name, the calibrated temp value and a timestamp
from the Data Generator module.

3. Run the Flow and insert some values

4. Change the PostgreSQL Select module you used to check the calibration data to show you
the data inserted into the ’data’ table.

Exercise C1.1
Extra: Use the Executer module to run generic SQL statements

1. Use a Postgres Executer module to run some generic SQL statements. For example:
1. Remove all data from a table:

DELETE FROM data

2. Check what tables that are available:
SELECT * FROM pg_catalog.pg_tables WHERE schemaname != 'pg_catalog' AND schemaname !=
'information_schema’

3. Check what columns that are available:
SELECT * FROM information_schema.columns WHERE table_schema = 'public' AND table_name =
'data';

Exercise C1.1
Wrap-up

In this exercise you have tried som of the SQL modules, both to read data from a database and
write data back to the database.

Some things to consider:

• How do you select which columns to write data to?

• How do the messages differ when writing a single row, versus writing multiple rows?

• Why did you have to add an Array Split module after the Select module?

• What happens if you change the behavior on the filter in the Select module to Static?

Exercise C1.2
Overview

• In this exercise you will rebuild the previous exercise by replacing the
PostgreSQL database with a Redis key/value store for the calibration
lookup.

• As before we will start by writing the calibration data into Redis and
then use this data to adjust our sensor data. The name of the sensor
will be the key and the calibration data the value.

• Finally, we will write the calibrated data to the database, just like
before.

• To access the Redis database you need the following connection
string: redis

You can add this from within one of the Redis modules, or on the
Credentials page

Exercise C1.2
Add calibration data

1. Make a copy of the Flow you built in the previous exercise (use ’New Flow from draft’ in
the Flow Studio)

2. Start by writing the calibration values to the database. Replace the PostgreSQL Insert
module with a Redis Set module. This time we cannot write all values at once, they need to
be written one at a time.

3. Use the data.name as ’Source Property’ and data.value as ’Value Property’.

name value

machine-1 1.5

machine-2 2

machine-3 2.5

Exercise C1.2
Adjust the sensor data

1. Replace the PostgreSQL Select module with a Redis Get module in the sensor data update
Flow.

2. Use name as ’Source Property’ and set the ’Target Property’ to calibrationData. You need to
update the expression in the Math module correspondigly.

3. Enable ’Keep Properties’ in the Redis Get module.

4. Run the Flow and verify that it’s working like before.

Exercise C1.2
Wrap-up

In this exercise you have used a key/value database (Redis) to lookup the calibration values.

Some things to consider:

• What is the difference between a key/value database and a SQL database? Why could
both be used for this use case.

• Why did we have to enable ’Keep Properties’ on the Redis Get module?

Extra: We could have used the built-in key/value store instead of Redis. Try modifying your flow by replacing
the Redis modules with the Key Value Set/Get modules. With these modules you get the option to use an in-
memory database (’Persistant storage’ false), which could be advantageous when you need fast lookups.

SESSION – C1 END

29

	Slide 1
	Slide 2: Session C1 Agenda
	Slide 3: SQL Modules
	Slide 4: Using SQL Databases without SQL
	Slide 5: Using Custom SQL
	Slide 6: Database Credentials
	Slide 7: Module Ms SQL Select
	Slide 8: Module Ms SQL Insert
	Slide 9: NoSQL Databases
	Slide 10: Key/Value Stores - Redis
	Slide 11: Key/Value Stores - Crosser
	Slide 12: Pub/Sub Stores - Redis
	Slide 13: Time Series Databases
	Slide 16: EXERCISES
	Slide 17: Setting up the training environment
	Slide 18: Exercise C1.1 Overview
	Slide 19: Exercise C1.1 Add calibration data
	Slide 20: Exercise C1.1 Generate sensor data
	Slide 21: Exercise C1.1 Fetch calibration data
	Slide 22: Exercise C1.1 Write adjusted data to the database
	Slide 23: Exercise C1.1 Extra: Use the Executer module to run generic SQL statements
	Slide 24: Exercise C1.1 Wrap-up
	Slide 25: Exercise C1.2 Overview
	Slide 26: Exercise C1.2 Add calibration data
	Slide 27: Exercise C1.2 Adjust the sensor data
	Slide 28: Exercise C1.2 Wrap-up
	Slide 29: SESSION – C1 END

