
1

WORKING WITH FILES &
USER MANAGEMENT
Course examination

Session 6
Agenda

2

Administration
• Users
• Roles & Permissions
• Authenticating users using external authentication

services

Working with files
• CSV Reader module
• File TextReader module
• File TextWriter module
• File StreamWriter module
• Additional file related modules
• Exercise 6

Exam!

CROSSER CONTROL CENTER
Administration

3

User Management

• Users are managed on the Organization page (found in the user
menu)

• Requires User, Roles or Identity Provider permissions
• Not available on free-trial accounts

• Here you can:
• Add new Users
• Assign Roles to users
• Create/Modify Roles
• Enable two-factor authentication for each user
• Setup authentication of users through federation with external identity

providers using OpenID Connect, e.g. Active Directory

4

5

Permissions and Roles
• Roles give Users permissions to

use different parts of the tool
• A User can be assigned one or

several Roles
• Custom Roles can be added

• Pre-defined roles:
Super User

• Can do everything
• Assigned to account owner

• Crosser Standard User
• Can do everything except

user management

View Create Edit Delete

Not in “Crosser
Standard User”

6

Identity Providers

• Crosser can give your organisation
control over specific domains

• These domains can then be setup to
use your federation server (through
OpenID Connect)

• Roles/Groups in your directory can
be mapped against Roles in Crosser

Identity provider wizard

Note
Contact Crosser to enable external authentication
for your domains

FILE MODULES

7

Module
File TextReader

• Reads a whole text file and produces one
output message with the whole content
assigned as a string on the target property

• Use a static filename (UI setting) or get the
filename from the incoming message

• Must be triggered by an incoming message

8

Module
File TextWriter

• Write a single string property to a file

• Existing files will be overwritten

• Use a static filename (UI setting) or get the
filename from the incoming message

9

Module
File StreamWriter

• Append text strings to files

• Files rotated on time (configurable)

• Optional header added, use e.g. to create
CSV files, see also CSV StreamWriter

• Optional compression of rotated files

• Files are named:
<base-name>-<timestamp>.<ext>

10

Module
CSV Reader

• Read CSV files from local storage and
produce one message per row

• Output messages are objects with
‘col’:’value’ pairs

• If a header is available column names will be
used as property name, otherwise ‘col1’,
‘col2’…

• Numeric values are converted

• Either the whole file or a specified number of
lines read on each trigger

• Use fixed filename (UI setting) or provide the
filename with the incoming message

11

Module
CSV StreamWriter

• Append message data to CSV files
• Input from an object, or an array of objects

• Each object should have the same properties

• Property names used as header

• Files rotated on time or number of rows, or
both

• Files are named:
<base-name>-<timestamp>.csv

• Configurable delimiter and timestamp
format

12

Note

This module only works on Docker Nodes

Modules
Additional modules for working with files in local storage

• Scan a directory for
files matching pattern

• Output is a message
with an array of
filenames

13

• Get a message when
new content is added
to a file

• Watch for changes to
files or directories

• Get a message when
files have been
changed, created or
deleted

• Move or Delete files

Modules
Modules for working with remote files

• Get the content of a
text file on the SFTP
server

14

• Scan a directory for
files matching pattern

• Get a message when
files are created or
changed

• Move files on the
SFTP server

• Download files to local
storage or upload files
from local storage to
the SFTP server

EXERCISES
Working with files

15

Exercise 6
Creating resources

1. On the Resources page, add a new ‘File’ resource,
give it a name and select ‘Enter data in editor…’

2. Copy the text in the ‘training.csv’ box to the right,
including the header, and paste it into the resource
editor. Then click on ‘Add content’

3. Set the ‘Local name on node’ to training.csv

4. Click on ‘Add resource’

5. Repeat these steps with the work_order.xml data
with another name and set the ‘Local name on
node’ to work_order.xml

16

A,B,C

0.656522649,68,714.2343198

0.878196354,23,775.4661639

0.437855321,100,626.7427292

0.077856166,15,65.25553316

0.53325495,60,1.428440405

0.059479536,67,442.5756271

0.204823965,52,254.0578046

0.756972378,37,346.8085203

0.107829569,89,775.8296446

0.705399242,37,312.7642644

0.472487204,11,167.9224729

0.882779035,12,192.078554

0.424580664,59,322.0796454

0.603819557,41,648.9296402

0.953433287,82,258.1882842

0.653187851,66,433.4167383

0.62848724,54,220.6768886

0.096767329,32,785.0659949

0.786741734,45,987.4842342

0.920375056,37,604.4130675

<?xml version="1.0" encoding="UTF-16"?>

<DOC>

 <HEADER>

 <TO_ADDRESS>CROSSER</TO_ADDRESS>

 <FROM_ADDRESS>STUDENT</FROM_ADDRESS>

 <IDENTITY>FUNDAMENTAL</IDENTITY>

 <TIME>2022-02-21 11:11:52</TIME>

 <MESSAGE_TYPE>WORK_ORDER</MESSAGE_TYPE>

 </HEADER>

 <BODY>

 <HEAD>

 <DIVI>SE</DIVI>

 <FACI>STO</FACI>

 <LINE>

 <EQNO>XYZ.123</EQNO>

 <STRT>STD</STRT>

 <TXT1>UPDATE MEASUREMENTS</TXT1>

 <VALUE1>0</VALUE1>

 <VALUE2>0</VALUE2>

 </LINE>

 </HEAD>

 </BODY>

</DOC>

training.csv work_order.xml

For these exercises you need to create
two resources before you start building
flows

Exercise 6.1
Overview

• Read CSV files from local disk (resource)
and process the data

17

Exercise 6.1
Reading files

1. Create a new flow called Exercise 6.1 and add the CSV resource you created to the flow on the
‘Resources’ panel (right-hand menu in the Flow Studio)

2. Use a ‘CSV Reader’ module to read the file:
• File: ./data/flowresources/training.csv

• Use the ‘Interval’ module to trigger the ‘CSV Reader’ on startup

3. Run the flow and check the output

4. Build a flow that calculates the average of each column
Answer: ‘A’: 0.5420425, ‘B’: 49.35, ‘C’: 446.7709

18

Exercise 6.1
Calculations with the Math Expression module

1. Calculate the sum of the results from the previous exercise, ie A + B + C, using the Math
module (Answer: 496.6629425)

2. Hint: You must get all values into a single message. The modules from session 4 can come in
handy!

19

?

Exercise 6.1
Wrap-up

Things to test/consider:

• Why did we have to use the ‘Object to Array’ and
‘Array Split’ modules before the ‘Aggregate’ module?

• Why did we have to convert messages after the
‘Aggregate’ module to calculate the sum?

• Extra: Add a local file in the ‘./data/flowresources’
directory and modify your flow to use this file instead
(you must run the flow on your local node)

20

Exercise 6.2
Overview

• Read an XML template from local storage (resource) and modify some values

• Write back an updated XML file

• Conversion between external data formats and Flow Messages

• Note: To see the created file you need to run the flow on your local node

21

Exercise 6.2
Writing files

1. Create a new flow called Exercise 6.2 and add the XML resource you created to the flow
2. Add a Data Generator module with the default template:

• Sample Interval: 10 seconds

3. Use a File Reader module to read the template file:
• Static Filename: ./data/flowresources/work_order.xml
• Target Property: inputFile

4. Add an XML module to convert from XML into a Flow Message:
• Source Property: inputFile
• Target Property: xml

5. Run the flow and check the output from the ‘File TextReader’ and the ‘XML’ modules

22

Exercise 6.2
Writing files

6. Use a ‘Property Mapper’ module to insert the value ‘temp’ and ‘pressure’ values from the ‘Data Generator’ into the
‘VALUE1’ and ‘VALUE2’ properties in the XML template

7. Convert the result back to XML:
1. Source Property: xml
2. Target Property: outputFile

8. Add a File Writer module to write the updated work order to disk:
• Static Filename: ./data/flowresources/updated_work_order.xml
• File Content Property: outputFile

10. Run the flow on your local node and verify that the output file is created

23

Exercise 6.2
Wrap-up

Things to test/consider:

• Why do we need the XML modules and what is the different
operations performed by the first and the second XML module

• Try adding a local file in the ‘./data/flowresources’ directory
and read it in one of the flows (you must run the flow on your
local node)

24

Exercise 6.3
Overview

• Create random data, add a timestamp and append rows to a
CSV file

• The exercise shows how to use the CSV StreamWriter module,
which is the easiest way to create a CSV file.

• You need to run this flow on your local node to see the result
• Note: The CSV StreamWriter module only works on Docker nodes. If you have

installed your local node as a Windows service you can replace it with a Text
Template module followed by a File StreamWriter module. You need to figure out
how to configure these (hint: create a CSV line with the Text Template and add the
header in the File StreamWriter)

25

timestamp,temp,pressure

2020-02-18T08:16:43.4363073Z,31,78

2020-02-18T08:16:44.4555897Z,44,96

2020-02-18T08:16:45.4579760Z,17,36

2020-02-18T08:16:46.4585630Z,36,32

On Docker nodes On Windows nodes

Exercise 6.3
Write streaming data to a CSV file

1. Create a new flow called Exercise 6.3 and add a ‘Data Generator’
module with the default message template

2. Add a timestamp to the message (‘Time Stamp’ module):
• Target Property: data.timestamp

3. Add a CSV StreamWriter module:
• Base File Name: ./data/flowresources/csv/test
• Max Lines Rotation: 10

4. Run the flow on your local node for at least 20 seconds and check
the result in your output folder

26

On Docker nodes On Windows nodes

Exercise 6.3
Wrap-up

Things to test/consider:

• What happens if you change the rotation time to 5 seconds on
the ‘CSV StreamWriter’ module? How many lines do you get in
each file and why?

27

On Docker nodes On Windows nodes

EXAM!

28

"data": [
 {
 "name": "uptime",
 "value": 5
 },
 {
 "name": "performance",
 "value": 500
 }
]

"data": [
 {
 "name": "uptime",
 "value": 5
 },
 {
 "name": "performance",
 "value": 500
 }
]

"data": [
 {
 "name": "uptime",
 "value": 5
 },
 {
 "name": "performance",
 "value": 500
 }
]

Exam
Introduction

• You will receive machine status messages every 5 seconds through
MQTT

• Each message contains the machine uptime (seconds) and
performance (items per minute), see example on the right.

• There is a sequence of 4 messages, then the data repeats. One of the
four messages contains invalid data (null)

• Your task is to build a flow that calculates the total number of
products produced by the machine over this sequence:

• The number of produced products, as reported by one message, is
uptime * performance

• Note 1: Keep track of the units used
• Note 2: Only a whole number of products can be produced in each step, ie if the

result from one message is 1.2 it means that only one product has been produced.

29

"data": [
 {
 "name": "uptime",
 "value": 5
 },
 {
 "name": "performance",
 "value": 500
 }
]

Exam
Introduction

• You should report your result by sending a message over MQTT,
where you include your email address and the number of products
produced, see example on the right.

• You will get an email telling you if your response was correct or not.
• Note: The email service has a rate limit of one message per minute. Since the data

repeats you should design your flow so that only one message is sent. The ‘Report
by Exception’ module can come in handy here.

• Delivery of a correct answer to the exam exercise will trigger a review
of your account and if everything looks fine you should expect a
diploma within a week, sent to the email address provided with the
exam.

• Examination criteria:
• Correct answer from the exam exercise delivered to Crosser
• Valid implementations of the exam flow and exercises
• The exam flow should be built using the modules described in the training sessions

30

{
 "data": {
 “email": “name@company.com”,
 “result": some number
 }
}

Exam
Setup

• MQTT broker URL: 10.0.48.117
• Topic for input data: training/exam1_input
• Topic for sending the result: training/exam1_result

31

COURSE WRAP-UP

32

Wrap-up

• What we hope you have learned:
• Basic understanding of the Crosser Edge Analytics solution
• Introduction to flow-based processing
• Introduction to the Crosser module library
• How to build, test and deploy use cases (Flows)
• Hands-on experience of typical use cases:

• Process streaming machine data
• Accessing APIs
• Working with files

Good luck with your future use cases!

33

Note
The Help Center is a good place to find
information on the Crosser tools.

Some articles that may be of interest:
• Analytics Modules Overview
• Complete list of available modules
• Module Updates
• The Flow Studio
• Release Notes

https://support.crosser.io/portal/en/kb/articles/resource-library
https://support.crosser.io/portal/en/kb/articles/analytics-modules
https://support.crosser.io/portal/en/kb/articles/crosser-module-library
https://support.crosser.io/portal/en/kb/articles/weekly-module-updates
https://support.crosser.io/portal/en/kb/articles/the-flowstudio
https://support.crosser.io/portal/en/kb/documentation/release-notes

Advanced Course
The next step in Your Analytics Training

Technical Deep-Dive into Advanced Analytics with Crosser.

Requires a local Docker environment and what you’ve learnt in this course.

Course Outline
• The Universal Connector – Build Your Own Modules in Crosser Cloud

• Custom Code modules – Run Your Python, C# or Javascript code in a flow

• Databases

• Flow-to-flow and Node-to-node communication

• Message buffering

• Executing ML models at the edge

34

35

THANK YOU!

